Mathematics

Primary
 Specification

- Rationale - page3-4
- National Curriculum and Subject 3Is - pages 5-7
- Summary of Subject Content - pages 8-11
- Stage Descriptors - pages 12-21
- Scheme of Assessment - page 22
- Assessment Criteria - page 23

Trust Level

KS1 and KS2 specifications are central to planning for progress across each year group. KS1 \& 2 children are formally assessed through DfE in the form of statutory assessments for English and Mathematics. Children receive a scaled score instead of a level. Their raw score - the actual number of marks they accrue - will be translated into a scaled score; this helps to allow for differences in the difficulty of the tests from year to year so that pupils' results can be compared accurately.

For KS1 SATs a score of $\mathbf{1 0 0}$ means the child is working at the expected standard, a score below 100 indicates that the child needs more support and a score of above 100 suggests the child is working at a higher level than expected for their age. The maximum score possible is 115 , and the minimum is 85 .

Children are also be matched against 'performance descriptors' (in other words what pupils are expected to know and be able to do at the time of testing) when being assessed by their teachers in non-SATs subjects at the end of Key Stage 1 and 2 to see if they've achieved the expected standard.

In KS2, the papers are marked externally, with no teacher assessment involved. Each child receives a raw score, a scaled score, and confirmation of whether or not they achieved the national standard. The range of scaled scores available for each KS2 test ranges from 80, the lowest possible scaled score, to 120 , the highest possible scaled score.

A scaled score of $\mathbf{1 0 0}$ or more means that the child has met the expected standard in each KS2 SATs test; a scaled score of 99 or less means they haven't reached the government-expected standard.

As a trust we use these tests as well as commenting on whether your child has made good progress over the year from our own assessments, giving details of curriculum areas where they have achieved well and areas that need more development and support. For subjects other than English and Maths, our own assessments \& judgements are made on progress and attainment.

Examples of age-related expectations are:

- Working within the expected level of attainment for his/her age
- Working towards the expected level of attainment
- Working below the expected level of attainment
- Working beyond the expected level of attainment (at greater depth)

Our specifications map stage descriptors up to Year 6 using progressive assessment objectives in line with National Curriculum. KS2 builds on essential skills and knowledge developed in previous years in preparation for moving forward in to KS3 and beyond. Skills and knowledge from the stage descriptors will inform teachers of student progress. This is turn will contribute to parents' evenings and end of year reports to parents.

School Level

Formal assessments may be administered in different ways depending on the school. E.g. gradings offered, end of unit mini assessments, knowledge review weeks, termly or half termly assessment periods etc.

In addition to formal assessments, schools will assess pupils informally in accordance with the schools guidelines. At school level the KS2 specification document for each subject will be supported by the school own planning documents/ portals which also include LTPs, MTPs, Schemes of work and associated resources.

Long Term Plans provider leaders, teachers, students and parents with the overview of the learning journey that occurs yearly. These are available on the school website.

Medium Term Plans map the outline learning for each of the learning focusses of each half term in each year group. These provide more detailed information into the steps to facilitate a differentiated approach ensuring that content and skills are covered. The number of activities / objectives covered may vary dependent on the length of a half term and the frequency of lessons in a given subject. There are 5 planning cycles in the year. Autumn 1, Autumn 2, Spring, Summer 1 and Summer 2.

Schemes of Work may vary from subject to subject allowing the specialists in schools to develop suitable activities and topics ensuring ownership of planning for progress. Please note that no external schemes are followed to the book and when used, are merely a starting point.

SOW - Guiding Principles

- Skills and content based
- Form part of the 'big picture' e.g.show progression over the 6 years in school
- Provide suggested resources
- Allow for teacher ownership and/or creativity of lessons
- Allow for appropriate differentiation

Mathematics is a creative and highly interconnected discipline that has been developed over centuries, providing the solution to some of history's most intriguing problems. It is essential to everyday life, critical to science, technology and engineering, and necessary for financial literacy and most forms of employment. A high-quality mathematics education therefore provides a foundation for understanding the world, the ability to reason mathematically, an appreciation of the beauty and power of mathematics, and a sense of enjoyment and curiosity about the subject.

The national curriculum for mathematics aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions

Mathematics is an interconnected subject in which pupils need to be able to move fluently between representations of mathematical ideas. The programmes of study are, by necessity, organised into apparently distinct domains, but pupils should make rich connections across mathematical ideas to develop fluency, mathematical reasoning and competence in solving increasingly sophisticated problems. They should also apply their mathematical knowledge to science and other subjects.

The expectation is that the majority of pupils will move through the programmes of study at broadly the same pace. However, decisions about when to progress should always be based on the security of pupils' understanding and their readiness to progress to the next stage. Pupils who grasp concepts rapidly should be challenged through being offered rich and sophisticated problems before any acceleration through new content. Those who are not sufficiently fluent with earlier material should consolidate their understanding, including through additional practice, before moving on.

See National Curriculum Mathematics programmes of study: key stages 1 and 2 for individual year group objectives.

Intent
Within our school, all children develop a solid understanding of all areas of Mathematics, delivered through fun, enjoyable, engaging and interactive lessons. All children are encouraged to become independent and highly motivated mathematicians. Our progressive curriculum enables pupils to scaffold, support and challenge their own learning, which in turn will equip them with valuable numeric, reasoning and problemsolving skills that can be transferred and applied in a variety of different contexts and for used in real life situations too.

Implementation

In the Foundation Stage, children are given the opportunity to develop their understanding of number, measurement, pattern and shape and space through a combination of short, formal taught sessions as well as a range of planned structured play-based situations, where the children are provided with ample opportunities for exploration and application.

Teachers use their First4Maths curriculum overviews to structure the delivery of the maths topics that are taught. They also choose from a wide variety of resources to aid their delivery. This allows for appropriate differentiation and challenge whilst ensuring that the teaching is based around the children's needs.

Progressive steps towards efficient written calculations should be developed and applied consistently within each year-group across school.

Prior learning activities are completed before a new area/concept is taught to inform the teacher's planning for groups and individual children and to enable them to provide teaching that successfully targets and challenges the children's needs.

Assessment for learning should occur throughout the entire maths lesson, enabling teachers/teaching assistants to adapt their teaching/input to meet the children's needs. This 'on-the-spot assessment' gives instant feedback and should be incisive and regular. If further support and intervention is needed this can be put in place early and to maximum effect.

Whilst the content and nature of lessons will vary and be different depending on the needs of the class being taught, children should play an active role within all lessons; practising skills they haven't yet mastered, reviewing previous learning, learning something new or learning to apply their knowledge to a variety of different contexts. They should be working quickly, at a fast pace that allows them to be productive and stretch their capabilities and thinking. They should actively share and magpie methods and ideas with their peers and focus upon the ones that are the most refined. The children should move from concrete, to pictorial to abstract representations before applying their knowledge to different situations.

Daily counting and mental strategies (number bonds, times tables facts and various strategies for taught calculations) are practised through morning activities, daily reviews and/ or targeted mental maths lessons.

All children should access fluency, varied fluency and reasoning and problem-solving based activities over the course of a taught unit. This will progress as the skills that the children are taught are practised, enhanced and applied. Children should always be encouraged to communicate their understanding of maths so that it clarifies their thoughts and deepens their understanding, whilst stretching and challenging the thoughts of their peers.

Termly summative assessments take place to provide a deeper understanding as to the level that a child is working at. This then enables our staff to make an informed and well-rounded judgement as to the child's current working capacities and abilities.

Impact

Children use their knowledge of known number facts to enhance and support their learning and functionality both inside and outside of the school setting. This will enable them to complete set learning tasks and also tackle everyday challenges within the wider world.

Children are able to recall a range of mental strategies to enable them to solve increasingly challenging calculations and problems. Children also draw upon a range of effective formal written methods to solve similar problems that range in complexity and challenge. When working at a higher level, children are able to independently select the most effective method to complete a calculation.

Children retain key skills and knowledge and build upon this progressively over time.
Children have the opportunity to solve problems and reason about number through a range of contexts that can increase in complexity and level of challenge. This can also link to the wider world and allow children to solve problems with real-life contexts.

Children explore features of shape and space, and develop their measuring skills to equip them with important life skills for the future.

Children practise and apply skills within the wider curriculum to ensure that they are retained and consolidated.

Children develop their mathematical communication skills through a number of different speaking and listening, hands on practical activities and focussing on an array of ways in which they record their work.

Page|7 Specification

Summary of Subject Content

Each year group follows the First4Maths Scheme of Learning. See each year group's 'Intent Documents' for an outline of the subject content.

STAGE DESCRIPTORS

Number and Place value

- count to and across 100, forwards and backwards, beginning with 0 or 1 , or from any given number
- count, read and write numbers to 100 in numerals; count in multiples of twos, fives and tens
- given a number, identify one more and one less
- identify and represent numbers using objects and pictorial representations including the number line, and use the language of: equal to, more than, less than (fewer), most, least
- read and write numbers from 1 to 20 in numerals and words.

Addition and Subtraction

- read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs
- represent and use number bonds and related subtraction facts within 20
- add and subtract one-digit and two-digit numbers to 20, including zero
- solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=$? -

YEAR 1

 9.Multiplication and Division

- solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.
Fractions
- recognise, find and name a half as one of two equal parts of an object, shape or quantity
- recognise, find and name a quarter as one of four equal parts of an object, shape or quantity.
Measurement
- compare, describe and solve practical problems for:

1. lengths and heights [for example, long/short, longer/shorter, tall/short, double/half]
2. mass/weight [for example, heavy/light, heavier than, lighter than]
3. capacity and volume [for example, full/empty, more than, less than, half, half full, quarter]
4. time [for example, quicker, slower, earlier, later]

- measure and begin to record the following:

	1. lengths and heights 2. mass/weight 3. capacity and volume 4. time (hours, minutes, seconds) - recognise and know the value of different denominations of coins and notes - sequence events in chronological order using language [for example, before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening] - recognise and use language relating to dates, including days of the week, weeks, months and years - tell the time to the hour and half past the hour and draw the hands on a clock face to show these times. Geometry - Position of Shapes - recognise and name common 2-D and 3-D shapes, including: 2-D shapes [for example, rectangles (including squares), circles and triangles] and 3-D shapes [for example, cuboids (including cubes), pyramids and spheres]. Geometry - Position and Direction - describe position, direction and movement, including whole, half, quarter and three quarter turns.
YEAR 2	Number and Place Value - count in steps of 2,3 , and 5 from 0 , and in tens from any number, forward and backward - recognise the place value of each digit in a two-digit number (tens, ones) - identify, represent and estimate numbers using different representations, including the number line - compare and order numbers from 0 up to 100; use and = signs - read and write numbers to at least 100 in numerals and in words - use place value and number facts to solve problems Addition and Subtraction - solve problems with addition and subtraction: 1. using concrete objects and pictorial representations, including those involving numbers, quantities and measures 2. applying their increasing knowledge of mental and written methods - recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 - add and subtract numbers using concrete objects, pictorial representations, and mentally, including: 1. a two-digit number and ones 2. a two-digit number and tens 3. two two-digit numbers 4. adding three one-digit numbers - show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot - recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems. Multiplication and Division - recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers - calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs

- show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot
- solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.
Fractions
- recognise, find, name and write fractions $1 / 3,1 / 2,2 / 4$ and $3 / 4$ of a length, shape, set of objects or quantity
- write simple fractions for example, $1 / 2$ of $6=3$ and recognise the equivalence of $2 / 4$ and $1 / 2$.
Measurement
- choose and use appropriate standard units to estimate and measure length/height in any direction (m / cm); mass (kg / g); temperature (${ }^{\circ} \mathrm{C}$); capacity (litres $/ \mathrm{ml}$) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels
- compare and order lengths, mass, volume/capacity and record the results using >, < and $=$
- recognise and use symbols for pounds ($£$) and pence (p); combine amounts to make a particular value
- find different combinations of coins that equal the same amounts of money
- solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change
- compare and sequence intervals of time
- tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times
- know the number of minutes in an hour and the number of hours in a day.

Geometry - Properties of Shape

- identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line
- identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces
- identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid]
- compare and sort common 2-D and 3-D shapes and everyday objects.

Geometry - Position and Direction

- order and arrange combinations of mathematical objects in patterns and sequences
- use mathematical vocabulary to describe position, direction and movement, including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three-quarter turns (clockwise and anticlockwise).
Statistics
- interpret and construct simple pictograms, tally charts, block diagrams and simple tables
- ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity
- ask and answer questions about totalling and comparing categorical data.
- count from 0 in multiples of $4,8,50$ and 100 ; find 10 or 100 more or less than a given number
- recognise the place value of each digit in a three-digit number (hundreds, tens, ones)
- compare and order numbers up to 1000
- identify, represent and estimate numbers using different representations
- read and write numbers up to 1000 in numerals and in words
- solve number problems and practical problems involving these ideas.

Addition and Subtraction

- add and subtract numbers mentally, including:

1. a three-digit number and ones
2. a three-digit number and tens
3. a three-digit number and hundreds

- add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction
- estimate the answer to a calculation and use inverse operations to check answers
- solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction.
Multiplication and Division
- recall and use multiplication and division facts for the 3,4 and 8 multiplication tables
- write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times onedigit numbers, using mental and progressing to formal written methods
- solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.
Fractions
- count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10
- recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators
- recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators
- recognise and show, using diagrams, equivalent fractions with small denominators
- add and subtract fractions with the same denominator within one whole [for example, $5 / 7+1 / 7=6 / 7$]
- compare and order unit fractions, and fractions with the same denominators
- solve problems that involve all of the above.

Measurement

- measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg / g); volume/capacity (1/ml)
- measure the perimeter of simple 2-D shapes
- add and subtract amounts of money to give change, using both $£$ and p in practical contexts
- tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12-hour and 24-hour clocks
- estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use vocabulary such as o'clock, a.m./p.m., morning, afternoon, noon and midnight

	- know the number of seconds in a minute and the number of days in each month, year and leap year - compare durations of events [for example to calculate the time taken by particular events or tasks]. Geometry - Properties of Shape - draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them - recognise angles as a property of shape or a description of a turn - identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle - identify horizontal and vertical lines and pairs of perpendicular and parallel lines. Statistics - interpret and present data using bar charts, pictograms and tables - solve one-step and two-step questions [for example, 'How many more?' and 'How many fewer?'] using information presented in scaled bar charts and pictograms and tables.
YEAR 4	Number and Place Value - count in multiples of $6,7,9,25$ and 1000 - find 1000 more or less than a given number - count backwards through zero to include negative numbers - recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones) - order and compare numbers beyond 1000 - identify, represent and estimate numbers using different representations - round any number to the nearest 10,100 or 1000 - solve number and practical problems that involve all of the above and with increasingly large positive numbers - read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value. Addition and Subtraction - add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate - estimate and use inverse operations to check answers to a calculation - solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why. Multiplication and Division - recall multiplication and division facts for multiplication tables up to 12×12 - use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers - recognise and use factor pairs and commutativity in mental calculations - multiply two-digit and three-digit numbers by a one-digit number using formal written layout - solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects. Fractions (including decimals) - recognise and show, using diagrams, families of common equivalent fractions - count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten.

- solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number
- add and subtract fractions with the same denominator
- recognise and write decimal equivalents of any number of tenths or hundredths
- recognise and write decimal equivalents to $1 / 4,1 / 2,3 / 4$
- find the effect of dividing a one- or two-digit number by 10 and 100 , identifying the value of the digits in the answer as ones, tenths and hundredths
- round decimals with one decimal place to the nearest whole number
- compare numbers with the same number of decimal places up to two decimal places
- solve simple measure and money problems involving fractions and decimals to two decimal places.
Measurement
- Convert between different units of measure [for example, kilometre to metre; hour to minute]
- measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres
- find the area of rectilinear shapes by counting squares
- estimate, compare and calculate different measures, including money in pounds and pence read, write and convert time between analogue and digital 12- and 24-hour clocks
- solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days.
Geometry - Properties of Shape
- compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes
- identify acute and obtuse angles and compare and order angles up to two right angles by size
- identify lines of symmetry in 2-D shapes presented in different orientations
- complete a simple symmetric figure with respect to a specific line of symmetry.

Geometry - Position and Direction

- describe positions on a 2-D grid as coordinates in the first quadrant
- describe movements between positions as translations of a given unit to the left/right and up/down
- plot specified points and draw sides to complete a given polygon.

Statistics

- interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs.
- solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs.
Number and Place Value
- read, write, order and compare numbers to at least 1000000 and determine the value of each digit
- count forwards or backwards in steps of powers of 10 for any given number up to 1 000000
YEAR 5
- interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero
- round any number up to 1000000 to the nearest $10,100,1000,10000$ and 100000
- solve number problems and practical problems that involve all of the above
- read Roman numerals to 1000 (M) and recognise years written in Roman numerals.
- add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)
- add and subtract numbers mentally with increasingly large numbers
- use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.
Multiplication and Division
- identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers
- know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers
- establish whether a number up to 100 is prime and recall prime numbers up to 19
- multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers
- multiply and divide numbers mentally drawing upon known facts
- divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
- multiply and divide whole numbers and those involving decimals by 10,100 and 1000
- recognise and use square numbers and cube numbers, and the notation for squared $\left(^{2}\right)$ and cubed (${ }^{3}$)
- solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes
- solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign
- solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates.
Fractions (including decimals and percentages)
- compare and order fractions whose denominators are all multiples of the same number
- identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths
- recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements > 1 as a mixed number [for example, 2/5 $+4 / 5=6 / 5=11 / 5$]
- add and subtract fractions with the same denominator and denominators that are multiples of the same number
- multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams
- read and write decimal numbers as fractions [for example, $0.71=71 / 100$]
- recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents
- round decimals with two decimal places to the nearest whole number and to one decimal place
- read, write, order and compare numbers with up to three decimal places
- solve problems involving number up to three decimal places
- recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100, and as a decimal
- solve problems which require knowing percentage and decimal equivalents of $1 / 2,1 / 4$, $1 / 5,2 / 5,4 / 5$ and those fractions with a denominator of a multiple of 10 or 25.

Measurement

- convert between different units of metric measure (for example, kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre)
- understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints
- measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres
- calculate and compare the area of rectangles (including squares), and including using standard units, square centimetres (cm^{2}) and square metres (m^{2}) and estimate the area of irregular shapes
- estimate volume [for example, using $1 \mathrm{~cm}^{3}$ blocks to build cuboids (including cubes)] and capacity [for example, using water]
- solve problems involving converting between units of time
- use all four operations to solve problems involving measure [for example, length, mass, volume, money] using decimal notation, including scaling.
Geometry - Properties of Shape
- identify 3-D shapes, including cubes and other cuboids, from 2-D representations
- know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles
- draw given angles, and measure them in degrees $\left({ }^{\circ}\right)$
- identify:

1. angles at a point and one whole turn (total 360°)
2. angles at a point on a straight line and 21 a turn (total 180°)
3. other multiples of 90°

- use the properties of rectangles to deduce related facts and find missing lengths and angles
- distinguish between regular and irregular polygons based on reasoning about equal sides and angles.
Geometry - Position and Direction
- identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed.
Statistics
- solve comparison, sum and difference problems using information presented in a line graph
- complete, read and interpret information in tables, including timetables

Number and Place Value

- read, write, order and compare numbers up to 10000000 and determine the value of each digit
- round any whole number to a required degree of accuracy
- use negative numbers in context, and calculate intervals across zero
- solve number and practical problems that involve all of the above.

Addition, Subtraction, Multiplication and Division

- multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
- divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
- divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context
- perform mental calculations, including with mixed operations and large numbers
- identify common factors, common multiples and prime numbers
- use their knowledge of the order of operations to carry out calculations involving the four operations
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
- solve problems involving addition, subtraction, multiplication and division
- use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.
Fractions (including decimals and percentages)
- use common factors to simplify fractions; use common multiples to express fractions in the same denomination
- compare and order fractions, including fractions > 1
- add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions
- multiply simple pairs of proper fractions, writing the answer in its simplest form [for example, $1 / 4 \times 1 / 2=1 / 8$]
- divide proper fractions by whole numbers [for example, $1 / 3 \div 2=1 / 6$]
- associate a fraction with division and calculate decimal fraction equivalents [for example, 0.375] for a simple fraction [for example, 3/8]
- identify the value of each digit in numbers given to three decimal places and multiply and divide numbers by 10,100 and 1000 giving answers up to three decimal places
- multiply one-digit numbers with up to two decimal places by whole numbers
- use written division methods in cases where the answer has up to two decimal places
- solve problems which require answers to be rounded to specified degrees of accuracy
- recall and use equivalences between simple fractions, decimals and percentages, including in different contexts.
Ratio and Proportion
- solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts
- solve problems involving the calculation of percentages [for example, of measures, and such as 15% of 360] and the use of percentages for comparison
- solve problems involving similar shapes where the scale factor is known or can be found
- solve problems involving unequal sharing and grouping using knowledge of fractions and multiples.
Algebra
- use simple formulae
- generate and describe linear number sequences
- express missing number problems algebraically
- find pairs of numbers that satisfy an equation with two unknowns
- enumerate possibilities of combinations of two variables.

Measurement

- solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate
- use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places
- convert between miles and kilometres
- recognise that shapes with the same areas can have different perimeters and vice versa
- recognise when it is possible to use formulae for area and volume of shapes
- calculate the area of parallelograms and triangles
- calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres (cm^{3}) and cubic metres $\left(\mathrm{m}^{3}\right)$, and extending to other units [for example, mm^{3} and km^{3}].
Geometry - Properties of Shape
- draw 2-D shapes using given dimensions and angles
- recognise, describe and build simple 3-D shapes, including making nets
- compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons
- illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius
- recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles.
Geometry - Position and Direction
- describe positions on the full coordinate grid (all four quadrants)
- draw and translate simple shapes on the coordinate plane, and reflect them in the axes.
Statistics
- interpret and construct pie charts and line graphs and use these to solve problems
- calculate and interpret the mean as an average.

Assessment Criteria

What we do

1. We implement an inclusive curriculum so that all children, including those with SEND, can make progress and demonstrate success in a range of ways.
2. We conduct baseline assessments, checking the pupils' existing knowledge and skill level.
3. We review and re-cap prior learning and link it to new and current study. We identify curriculum links so that learning can be applied and assessed in new contexts.
4. Teachers use a range of assessment activities in their class, including the review of knowledge organisers, mini assessments, sketch books, independent tasks, work in books, pupil chats in lessons. We incorporate longitudinal study where appropriate, including geography and history to assess long term knowledge retention.
5. To meet the expected standard, pupils should demonstrate a broad understanding of the key facts in the end points for that year (as outlined in the subject key specification document). In addition, they retain key knowledge from prior learning.
6. At the greater depth standard, pupils demonstrate knowledge and understanding of every aspect of the key specification to the highest degree.
7. We enter a mid-year and end of year attainment grade onto FFT. Subject leaders analyse the data and report to governors annually.
8. Bi-annual peer audits provide quality assurance, moderation of standards and training across trust schools.

The Rowan Learning Trust

Our logo was carefully chosen to represent the children, young people and adults in our learning community who strive for excellence through high aspiration and high expectation.

